15 research outputs found

    A new ghost cell/level set method for moving boundary problems:application to tumor growth

    Get PDF
    In this paper, we present a ghost cell/level set method for the evolution of interfaces whose normal velocity depend upon the solutions of linear and nonlinear quasi-steady reaction-diffusion equations with curvature-dependent boundary conditions. Our technique includes a ghost cell method that accurately discretizes normal derivative jump boundary conditions without smearing jumps in the tangential derivative; a new iterative method for solving linear and nonlinear quasi-steady reaction-diffusion equations; an adaptive discretization to compute the curvature and normal vectors; and a new discrete approximation to the Heaviside function. We present numerical examples that demonstrate better than 1.5-order convergence for problems where traditional ghost cell methods either fail to converge or attain at best sub-linear accuracy. We apply our techniques to a model of tumor growth in complex, heterogeneous tissues that consists of a nonlinear nutrient equation and a pressure equation with geometry-dependent jump boundary conditions. We simulate the growth of glioblastoma (an aggressive brain tumor) into a large, 1 cm square of brain tissue that includes heterogeneous nutrient delivery and varied biomechanical characteristics (white matter, gray matter, cerebrospinal fluid, and bone), and we observe growth morphologies that are highly dependent upon the variations of the tissue characteristics—an effect observed in real tumor growth

    Detonation Structure Simulation with AMROC

    No full text
    Numerical simulations can be the key to the thorough understanding of the multi-dimensional nature of transient detonation waves. But th

    Piecewise constant level set methods and image segmentation

    No full text
    Abstract. In this work we discuss variants of a PDE based level set method. Traditionally interfaces are represented by the zero level set of continuous level set functions. We instead use piecewise constant level set functions, and let interfaces be represented by discontinuities. Some of the properties of the standard level set function are preserved in the proposed method. Using the methods for interface problems, we minimize a smooth locally convex functional under a constraint. We show numerical results using the methods for image segmentation.
    corecore